
Query Optimisation:$

Query Optimisation:$

What are the steps in query processing?

High Level Query Scanning and Syntax checking → Intermediate Form →

Intermediate Form → Query Optimizer Execution Plan→

Execution Plan Query Code Generator → Code to Execute Query→

Code to Execute Query Run time Database Program → Result→

What is a query optimizer?

The query optimizer is the component of a database management system that attempts to
determine the most efficient way to execute a query. The optimizer considers the possible
query plans for a given input query, and attempts to determine which of those plans will be
the most efficient. Cost-based query optimizers assign an estimated "cost" to each possible
query plan, and choose the plan with the least cost. Costs are used to estimate the runtime
cost of evaluating the query, in terms of the number of I/O operations required, the CPU
requirements, and other factors. The set of query plans examined is formed by examining the
possible access paths (e.g. index scan, sequential scan) and join algorithms (e.g. sort-merge
join, hash join, nested loops). The search space can become quite large depending on the
complexity of the SQL query.

The query optimizer cannot be accessed directly by users. Instead, once queries are submitted
to database server, and parsed by the parser, they are then passed to the query optimizer
where optimization occurs.

What is Query Optimization Process?
Query optimisation process is the procedure of selecting the best plan or strategy to be used
in responding to a database request.
To process a query depends upon the following steps:

1. Query: Supplied by external user to process a request.
2. Parsing and translation: The user query is then convert into the relational algebra by

the help of a translator. In this step system use the operator tree (also query tree) to
convert the query into relational algebra form.

3. Relational algebra expression: The query is expressed in relational algebraic form by
taking the help of operators like pi,sigma,cross,join etc.

4. Optimizer: The optimizer check whether the related data is present in the database or
not. If data present then the optimizer search the best plan to evaluate the query.

5. Evaluation plan: To find the best solution, the next step is the evaluation plan. Here
the optimizer choose one of the best strategy and then the optimizer pass that plan to
the evaluation engine.

6. Evaluation Engine: The query evaluation engine access the required data from the
database.

$ Parts adapted from Lecturer Pelve Mogin

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 29 }

file:///wiki/Database_management_system
file:///wiki/Hash_Join
file:///wiki/Hash_Join
file:///wiki/Hash_Join
file:///wiki/Sort-merge_join
file:///wiki/Sort-merge_join
file:///wiki/Sort-merge_join
file:///wiki/Sort-merge_join
file:///wiki/Sort-merge_join
file:///wiki/Sort-merge_join
file:///wiki/Query_plan
file:///wiki/Query_plan
file:///wiki/Query_plan
file:///wiki/Query
file:///wiki/Query
file:///wiki/Query
file:///wiki/Database_management_system
file:///wiki/Database_management_system

Query Optimisation:$

7. Query Output: After evaluating the query the output is produced.

Example:
Q: Find those employee records where the salary of the employee is greater than 2000

and deptno is 20.

Step1 – Finding out the Query
Let's make an unoptimized query; First find out the deptno from emp where empno is 20,
some sort of a redundant query and then employees working in deptno 20 and sal>2000.

SELECT * FROM EMP WHERE SAL>2000 AND DEPTNO=(SELECT DISTINCT DEPTNO
FROM EMP WHERE DEPTNO=20);

A query can always be written in more than one way. So the user can express the query in
any form but it is the responsibility of the system to convert it to an efficient one before
execution. The previous query should normally have been written as:

SELECT * FROM EMP WHRE SAL>2000 AND DEPTNO=20;

However it is not our task, but the task of the optimizer.

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 30 }

Schematic Diagram of Query Optimization Process

Relational Algebra
ExpressionParser

Optimizer

 Evaluation
Engine

Output Execution
Plan

Data
Dictionary

Query

Database

Query Optimisation:$

Step2 – Parsing the Query
Let's take the first form of the query and put it in an operator tree (query tree)

sal>2000


deptno=20


Emp
Step3 – Relational Algebra Expression

sal>2000(deptno=20 (Emp))
Step4 – Finding the Best Solution
The cascading selections are added up together using an AND to obtain the following

sal>2000 ∧ deptno=20
Step5 – till Output
The second strategy obtained is an optimized one so we can expect that it will be passed on
for processing and output is obtained.

Example:
Q: Find the student whose CGPA is greater than 8 from the following schema
Student(Name,Roll,Address) Grade(Roll,CGPA)

Step1
SELECT NAME FROM STUDENT S, GRADE G WHERE S.ROLL=G.ROLL AND CGPA>8
Step2

name
|

cgpa>8 AND s.roll=g.roll
|
×

 

Student Grade
Step3

name(cgpa>8 AND s.roll=g.roll(Student×Grade))
Step4
Finding an Optimal Solution 1

name
|

cgpa>8
|
×

roll

Student Grade

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 31 }

Query Optimisation:$

2nd solution
name

|

roll

Student |
 cgpa>8

 |
 Grade

Now we convert it to: name Student (cgpa>8(Grade))
Step 5 till 7
As the obtained query name Student (cgpa>8(Grade)) is the optimal one it will be passed
for processing and output obtained.

NOTE: In finding out the optimal solution to a query, the most important point is to find out
the equivalences for existing algebraic expressions.

Transformations of an expression to its Equivalent Expressions

1. Combining a cascade Selection
2. Combining a cascade Projection
3. Commute Selection and Projection
4. Use associative and commutative rules for joins and Cartesian product
5. Perform selections before join or Cartesian product
6. Perform modified projection before a join
7. Commuting Projection with a Cartesian Product
8. Commuting Projection with Union
9. Commuting Selection with Union
10. Commuting Selection with difference

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 32 }

Query Optimisation:$

1. Combining a cascade Selection

cond1(cond2(cond3(R))) ≡ cond1∧cond2∧cond3(R)

2. Combining a cascade Projection

colsX(colsY(colsZ(R))) ≡ colsX(R) where X  Y  Z

3. Commute Selection and Projection

cond(colsX(R)) ≡ colsX(cond(R))

4. Use associative and commutative rules for joins and Cartesian product

R1 R2 = R2 R1
(R1 R2) R3 = R1 (R2 R3)
(R1  R2)  R3 = R1  (R2  R3)

5. Perform selections before join or Cartesian product

cond(R1 R2) will be converted to (condR1) R2

6. Perform a projection before the join

colsX(R1 R2) will be converted to (colsXR1) R2

7. Commuting Projection with a Cartesian Product

colsX(R1  R2) will be converted to colsX1R1  colsX2 R2

8. Commuting Projection with Union

colsX(R1 ∪ R2) will be converted to colsXR1 ∪ colsXR2

9. Commuting Selection with Union

cond(R1 ∪ R2) will be converted to condR1 ∪ condR2

10. Commuting Selection with difference

cond(R1 — R2) will be converted to condR1 — condR2

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 33 }

Query Optimisation:$

What is a Query Tree?

Query tree is a tree data-structure like presentation which corresponds to a relational
algebra statement/expression. All the input relations here are the leaf nodes and relational
algebraic operators are the internal nodes.

The execution of the query tree is from bottom to top and when the root node is
processed, the execution terminates and result is obtained.

Points:-

● Whereas declarative query languages (including SQL) offer a great comfort for users,
they place a considerable burden on a Query Processor.

● A Query Processor is responsible to produce an execution plan that will guarantee an
acceptable response time.

● Choosing a query execution plan is called Query Optimization and it mainly means
making decisions about data access methods.

● For each SQL query, query parser generates an initial query tree of logical operators.
● It is also called the canonical query and it is not optimized.
● In most cases, direct execution of a canonical query would be very inefficient.

Let's take a Problem:
Consider the following relational schema

N1 ({A, B, C, D }, {A }),
N2 ({A, E, Q }, {AE }),
N3 ({E, F, G }, {E, F })

and the SQL query
SELECT C
FROM N1, N2, N3
WHERE F = 'f ' AND N1.A = N2.A AND N2.E = N3.E AND D > d ;

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 34 }

(N1) (N2)

(N3)×

×

C

σ F = 'f ' ∧ N1.A = N2.A ∧ N2.E = N3.E ∧ D > d

Query Optimisation:$

Generally This is the initial structure of the Query Tree

● A query tree of logical operators is a binary tree
● The nodes of that tree are logical (relational algebra) operators
● Lower level nodes, starting from leaves, contain Cartesian product operators
● These are applied onto relations from the SQL FROM clause
● After that are (relational) select and join conditions from SQL WHERE clause to upper

tree nodes applied
● Finally is project operator of the SELECT clause

Now Analyze the previous Question

Question
Suppose each of r (N1), r (N2), and r (N3) has 1000 tuples

How many tuples will have the intermediate query result after the two Cartesian products?
Answers:

1. Thousand
2. Million
3. Billion

Question
How many N3 tuples are asked by the example query:

1. Many
2. Only God knows
3. At most one

Question
What is the rational behind an attempt to apply a restrictive select operation as early as
possible:

● All further operations will use less tuples and thus perform faster
● The result will be more accurate
● The optimization will be more complex to understand

O Performing project operations as early as possible brings an improvement in the
efficiency of a query execution Because tuples get shorter after projection, the query
execution will be faster
O Heuristic optimization converts a declarative query to a canonical algebraic query tree,
that is then gradually transformed using certain rules
O The main heuristics is to perform unary relational operations (selection and projection)
before binary operations (joins, set theoretic), and aggregate functions with (or without)
grouping

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 35 }

Query Optimisation:$

Solution

● According to the structure of the initial query tree, two Cartesian products should be
executed first

● But this query asks for only a few tuples from r (N1) (D > d), and even for at most
one tuple from r (N3) (F = ‘f ’)

● The main heuristic rule is to apply unary operations select and project before binary
operations like join and set theoretic operations, and before aggregate functions

● Hence, move select operations down the tree

● Further improvement can be achieved by replacing each Cartesian product followed
by a select according to a join condition with a join operator

● Next improvement can be achieved by switching the positions of N1 and
● N3, so that the very restrictive select operation
● F = ‘f ’
● could be applied as early as possible

● Final improvement can be achieved by keeping in intermediate relations only the
attributes needed by subsequent operations

● This can be accomplished by applying defined, or even introducing new - undefined
(but logically implied) project () operations as early as possible

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 36 }

r(N3)

r(N2) r(N1)

N1.C

 N2.E = N3.E

F = ‘f ’

D > d

 N2.A = N1.A

πN3.E πN2.(A, E)

πN1.(A, C)

πN2.A

	Query Optimisation:$

