
Time-Stamp based Concurrency Control

Time-Stamp based Concurrency Control

● In a time-stamp based concurrency control protocol, we associate an unique time-
stamp to each transaction denoted as TS(ti) where ti is the transaction.
○ Either the value of the system clock is taken as the time-stamp when the transaction

entered the system.
○ Or a logical counter is used that is incremented after the entry of every transaction

into the system. The transaction is assigned with the counter's present value when
the transaction is entered into the system.

○ The timestamps of the transactions determine the serializability order.
● To implement this scheme, two times-tamp values are associated with each data item

also. Let's take a data item (A) and see:-
○ W-timestamp(A) is the largest of the times-tamps of any transaction that

successfully has written to (A).
○ R-timestamp(A) is the largest timestamp of any transactions that successfully reads

the (A).
● A transaction with a smaller time-stamp value is considered to be an older transaction

whereas a transaction with a larger time-stamp is considered to be a younger one.
● A conflict is said to occur when an older transaction tries to read a value that is written

by a younger transaction.
If TS(Ti)<W-timestamp(A) then the the read operation of Ti is rejected and Ti is rolled
back. Otherwise;
If TS(Ti)>W-timestamp(A) then the the read operation is accepted.

● A conflict also occurs when an older transaction tries to modify a value already read or
written by a younger transaction.
If TS(Ti)<R-timestamp(A) or If TS(Ti)<W-timestamp(A) here Ti has a Write operation
in conflict.

● These time-stamp ordering protocols ensure conflict serializability because conflicting
operations are processed in time-stamp order.

● This protocol ensures freedom from deadlock, since no transaction ever waits as the
conflict is resolved by rolling back the conflicting transaction(s).

● The only demerit of this protocol is that if there is a long transaction conflicting with a
sequence of short transactions then the long transaction may be repeatedly restarted
causing a starvation.

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 18 }

Multiversion schemes

Multiversion schemes

The Multiversion schemes get their name from keeping multiple versions of the data in
the database. In this scheme each write operation creates a new version of data (A). When
any transaction issues a read on (A) then the concurrency control manager selects one version
of (A) and allows it to be read.

● The concurrency control manager during selection of the version of (A) must ensure
that the serializability is maintained and

● The process of determining the proper version of (A) should be easy and quick.

We can apply the multiversion scheme to both time-stamp and 2PL schemes. However
Multiversion timestamp ordering is most common.

The transactions have timestamps associated with them as TS(ti). Further for a data
item (A) there is a sequence of versions of (A) like (A1), (A2), (A3) etc. Each (Ai) contains three
data fields:-

1. Content (value of the version of A)
2. W-timestamp(Ai) is the timestamp of the transaction which created this version.
3. R-timestamp(Ai) is the largest timestamp from the transactions which successfully read

the version.

If transaction (t11) creates a version of (A) by a write operation let's take (A3) then the
content is the value written and W-timestamp(A3) and R-timestamp(A3) is initialized to the
timestamp of (t11) i.e. TS(t11). Whenever any transaction (ti) reads (A3) then the TS(ti) will be
checked with R-timestamp(A3) and if the current timestamp is less (R-timestamp(A3)<TS(ti))
then the R-timestamp will be updated to TS(ti).

To ensure serializability:
1. If any transaction wants to read (A) then the value of (Ai) whose W-timestamp is

largest is provided for read1. If the timestamp of the transaction is TS(ti) then:
W-timestamp(Ai)<TS(ti) has to be true too.

2. If any transaction wants to write (A) then2
1. if (TS(ti)<R-timestamp(Ai)) then

Rollback(ti)
2. if (TS(ti)=W-timestamp(Ai)) then

the value is overwritten
3. if (TS(ti)>W-timestamp(Ai)) then

a new version of (A) is created with the timestamp of (ti) that is TS(ti).

1 The rule-1 says that only the recent version of (A) must be read.
2 The second rule forces a transaction to abort if a newer transaction has read the value. Otherwise the other

conditions are evaluated to compare the value of the write timestamp of the data item (Ai) and
appropriate decision is taken. If other two conditions also not satisfied then Rollback(ti) is performed.

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 19 }

Multiversion schemes

Multiversion Locking
This attempts to combine the benefits of multiversion concurrency control along with

the advantages of two-phase locking. This protocol differentiates between Read-only and
Update transactions.

For Update transactions there is rigorous 2phase Locking (all locks are held till
completion of transaction) and so they are serializable. Each version of the data item is has a
single timestamp. The timestamp in this case is not a real clock-based one but rather a counter
(ts-counter). When the Update transaction(ti) wants to read it gets a shared lock and reads the
recent most value. When it want to execute an update on the database it is allowed an
exclusive lock. It creates a new version with timestamp (∞) which is bigger then any possible
timestamp. When it completes all the actions it carrys out the commit process.

● it sets the timestamp of each version it created to TS(ti)+1
● the ts-counter is incremented

Only one Update transaction is permitted at a time.

Read-only transactions are assigned a timestamp by reading the current ts-counter.
They follow the multiversion timestamp ordering protocol for read.

Read-only transactions will read the value before update if they are executed before
an update is performed or will see an updated value if they are executed after an update.

http://www.manik.in/StudSupp/ Manik Chand Patnaik – DBMS Note-4 { 20 }

	Time-Stamp based Concurrency Control
	Multiversion schemes

